Quantum data compression by principal component analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

compression of breast cancer images by principal component analysis

the principle of dimensionality reduction with pca is the representation of the dataset ‘x’in terms of eigenvectors ei ∈ rn  of its covariance matrix. the eigenvectors oriented in the direction with the maximum variance of x in rn carry the most      relevant information of x. these eigenvectors are called principal components [8]. assume that n images in a set are originally represented in mat...

متن کامل

Power Quality Data Compression Using Principal Component Analysis

With the increasing of non-linear, burst or un-balanced load, power quality issues in the grid is becoming important. With more power quality monitors installed with higher sampling rates, an expanded size of power quality data brings difficulty to storage, transmission and analysis. In this paper, principal component analysis (PCA), which is a popular feature extraction algorithm in pattern re...

متن کامل

Principal Component Analysis for Data Compression and Face Recognition

Data compression is the most important step in many signal processing and pattern recognition applications. We come across very high dimensional data in such applications. Before processing of large-dimensional datasets, we need to reduce the dimensions to have lesser storage space and reduced computational complexities while retaining the maximum information. Principal Component Analysis (PCA)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quantum Information Processing

سال: 2019

ISSN: 1570-0755,1573-1332

DOI: 10.1007/s11128-019-2364-9